Stably Isomorphic Dual Operator Algebras

نویسندگان

  • G. K. ELEFTHERAKIS
  • V. I. PAULSEN
چکیده

We prove that two unital dual operator algebras A,B are stably isomorphic if and only if they are ∆-equivalent [7], if and only if they have completely isometric normal representations α, β on Hilbert spaces H,K respectively and there exists a ternary ring of operators M ⊂ B(H,K) such that α(A) = [M∗β(B)M]−w and β(B) = [Mα(A)M∗]−w .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Isomorphism of Dual Operator Spaces

We prove that two dual operator spaces X and Y are stably isomorphic if and only if there exist completely isometric normal representations φ and ψ of X and Y , respectively, and ternary rings of operators M1,M2 such that φ(X) = [M ∗ 2 ψ(Y )M1] −w ∗ and ψ(Y ) = [M2φ(X)M ∗ 1 ]. We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being ...

متن کامل

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

. O A ] 1 7 O ct 2 00 7 Riemann surfaces and AF - algebras

For a generic set in the Teichmüller space, we construct a covariant functor with the range in a category of the operator AF -algebras. The functor maps isomorphic Riemann surfaces to the stably isomorphic AF algebras. Our construction is based on a Hodge theory for measured foliations, elaborated by Hubbard, Masur and Thurston. As an application, we consider the following two problems: (i) a c...

متن کامل

Riemann Surfaces and Af -algebras

For a generic set in the Teichmüller space, we construct a covariant functor with the range in a category of the operator AF -algebras. The functor maps isomorphic Riemann surfaces to the stably isomorphic AF algebras. Our construction is based on a Hodge theory for measured foliations, elaborated by Hubbard, Masur and Thurston. As an application, we consider the following two problems: (i) a c...

متن کامل

Holomorphic Vertex Operator Algebras of Small Central Charge

We provide a rigorous mathematical foundation to the study of strongly rational, holomorphic vertex operator algebras V of central charge c = 8, 16 and 24 initiated by Schellekens. If c = 8 or 16 we show that V is isomorphic to a lattice theory corresponding to a rank c even, self-dual lattice. If c = 24 we prove, among other things, that either V is isomorphic to a lattice theory corresponding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007